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Abstract

The one-loop radiative correction to the photon propagator can be graphically
represented by the Feynman diagram of the second order. The physical meaning
of this diagram is the process γ → (e− + e+) → γ, where γ is denotation for
photon, and e−, e+ is the electron-positron pair. It means that photon can exist
in the intermediate state with the electron and positron as virtual particles.
The photon propagation function based on such process with electron-positron
pair e−, e+ is derived. The modified Lagrangian of electromagnetic field is
derived supposing the modified Green function of photon. The Schwinger source
methods of quantum field theory was applied. Then, the modified Maxwell
equations are derived from the new Lagrangian.

1 Introduction

Maxwell’s Equations, formulated around 1861 by James Clerk Maxwell, describe the
interrelation between electric and magnetic fields. They were a synthesis of what was
known at the time about electricity and magnetism, particularly building on the work of
Michael Faraday, Charles-Augustin Coulomb, Andre-Marie Ampere, and others. These
equations predicted the existence of Electromagnetic waves, giving them properties that
were recognized to be properties of light, leading to the (correct) realization that light
is an electromagnetic wave. Other forms of electromagnetic waves, such as radio waves,
were not known at the time, but were subsequently demonstrated by Heinrich Hertz in
1888. These equations are the most elegant edifices of mathematical physics.
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They are usually formulated as four equations and are usually expressed in differential
form, that is, as partial differential equations involving the divergence and curl operators.
They can also be expressed with integrals.

Albert Einstein developed special and general relativity to accommodate the invariant
speed of light, a consequence of Maxwell’s equations, with the principle that only relative
movement has physical consequences. The equations are the unification of a theory for
previously separately described phenomena: magnetism, electricity, light, and associated
radiation.

2 The modified Maxwell equations

The one-loop radiative correction to the photon propagator can be graphically rep-
resented by the Feynman diagram of the second order. The physical meaning of this
diagram is the process γ → (e− + e+) → γ, where γ is denotation for photon, and
e−, e+ is the electron-positron pair. It means that photon can exist in the intermediate
state with e+, e− virtual particles. The photon propagation function based on such pro-
cess with electron-positron pair e−, e+, was determined (Schwinger,1973; 2018 ) from the
effective emission and absorption sources .

The photon propagator involving the two-particle exchange process obviously leads to
the modified Maxwell equations which are based on the new propagator. Let us here try
to derive the more realistic Maxwell equations which are adequate to the more realistic
photon propagator.

The vacuum amplitude involving the electron and positron exchange has been derived
in the form (Schwinger, 1970; 1973; 2018; Dittrich, 1978):

〈0+|0−〉 = −e2
∫
dM2I(M2)dωkA

µ
1(−k)

(
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)
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where k0 = +
√

k2 +M2.
Using the field strength in the momentum representation

Fµν = ikµAν(k)− ikνAµ(k) (3)

we get with k = p+ p′

−1

2
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and after inserting of eq. (4) into eq. (1), we get

〈0+|0−〉 = ie2
∫ dM2

M2
I(M2)

(
−1

2

)
F µν
1 (−k)idωkF2µν(k), (5)

2



which leads directly to a space-time extrapolation which we formulate as an action
expression

W =
∫
dM2M2a(M2)

(
−1

4

)
F µν(x)

[
∆+(x− x′,M2) + C.T.

]
Fµν(x

′), (6)

where C.T. is appropriate contact term and
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4πα

M2
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. (7)

The contact term can be determined by the physical normalization condition that the
action appropriate to the real photons (k2 = 0) must not be altered. This can be achieved
by the combination

∆+(x− x′,M2)− 1

M2
δ(x− x′) =

1

M2
∂2∆+(x− x′,M2) (8)

which is transformed in the momentum space as

1

k2 +M2 − iε
− 1

M2
= − k2

M2

1

k2 +M2 − iε
. (9)

Thus a more complete action for the electromagnetic field is given by the formula

W =
∫

(dx)
[
Jµ(x)Aµ(x)− 1

4
F µν(x)Fµν(x) −

∫
dM2a(M2)(−1

4
)
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′). (10)

In the last action the locality is lost. However, if we consider fields that vary slowly
over the interval 1/M < 1/2m, we can simplify (10) by substituting x for x′ in the field
structure. Then, using∫

(dx′)∆+(x− x′,M2) = ∆+(k = 0,M2) =
1
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(11)

together with
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where we have used substitution

v =

(
1− 4m2

M2

)1/2

, (13)

we can replace the last term in W by

− α

15π

1

m2

∫
(dx)(−1

4
)∂λF µν(x)∂λFµν(x), (14)

and in the considered limit the appropriate Lagrange function is
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L = (−1

4
)
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]
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The final Lagrangian implies the modified Maxwell equations in the following form:(
1 +

α

15π

1

m2
∂2
)
∂νF

µν(x) = Jµ(x) (16)

Since these equations are restricted to ∂2 � m2, the exact solution has no meaning.
The approximate solution is as follows:
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(
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15π

1
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) ∫
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apart from a gauge term. The explicit expression of action corresponding to the extended
potential Aµ is now given by the formula:
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2
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2
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2

∫
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and it implies the modification of the energy of two quasistatic charge-current distribution:

Eint = −
∫

(dx)(dx′)Jµa (x)V (x− x′)Jbµ(x′) −

α

15π

1

m2

∫
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where

V (x− x′) =
1

4π|x− x′|
(20)

3 Discussion

So-called Maxwell equations is system of basic laws or ”postulates” which plays the same
part in electrodynamics as Newton’s ”axioms” do in classical mechanics. Particularly, the
correctness of these main postulates of macroscopic electrodynamics (like the correctness
of Newton’s axioms) can be substantiated in the most convincing way not by the inductive
method (which is the only one that can be used in finding fundamental laws, but which,
however, cannot give an absolutely strict proof of their correctness), but by agreement
with experimental results of the entire complex of corollaries following from the theory
and covering all the laws of a macroscopic electromagnetic field (Tamm, 1979).

Let us remark some words to the so called contact terms in eq. (6). So, source
couplings that are inferred through space-time extrapolations of causal arrangements can
always be supplemented by contact interactions. Unless additional physical considerations
can be adduced, the contact terms remain arbitrary and may be omitted. But, when fields
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replace sources such local interaction terms do have physical content; their existence must
be recognized and related to the accompanying physical requirements. Since contact
couplings in coordinate space appear as polynomial functions F (γp) of momenta in
momentum space, the correct form of F (γp) supplements propagation function by a
polynomial in γp+m. Quadratic and higher powers of this convenient combination modify
the propagation function by constant or polynomial functions of momenta (Schwinger,
1970; 2018).

The situation is different in the traditional quantum field theory. The widely known
features of Quantum Field Theory is that it is plagued by divergences. This has
traditionally been cited as the need for renormalization. However, renormalization is
needed even if the theory is finite: divergences are not the cause for this procedure.
Moreover, there are many unknowns at high energy because we have not yet explored all
energies. Divergences are just one of these uncertainties. We have no way of knowing
whether the divergences really occur or whether there is some compensating physics that
makes a finite theory. But in the end, these unknowns do not matter. Because all
unknown high energy physics is local when viewed at low energy, and because we measure
the experimental values of the low energy constants as required by renormalization, all
ultraviolet divergences are irrelevant for physics at ordinary energies (Donoghue et al.,
2022).

References

Dittrich, W. (1978). Source methods in quantum field theory, Fortschritte der Physik 26,
289.

Donoghue, J. and Sorbo, L. A prelude to quantum field theory (Princeton University Press,
2022)

Schwinger, J. Particles, Sources and Fields, Vol. I, (Addison-Wesley, Reading, Mass.,
1970).(Or, Published 2018 by CRC Press Taylor & Francis Group 6000 Broken Sound
Parkway NW, Suite 300 Boca Raton, FL 33487-2742).

Schwinger, J. Particles, Sources and Fields Vol. II, (Addison-Wesley, Reading, Mass.,
1973). (Or, Published 2018 by CRC Press Taylor & Francis Group 6000 Broken Sound
Parkway NW, Suite 300 Boca Raton, FL 33487-2742).

Tamm, I. E. Fundamentals of the Theory of Electricity
(Mir Publishers Moscow, 1979), Translated from the 1976 Russian edition by G. Leib.

5


